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Abstract. We consider the thermodynamic behavior of a disordered interacting electron system in two
dimensions. We show that the corrections to the thermodynamic potential in the weakly localized regime
give rise to a non monotonic behavior of the specific heat both in temperature and magnetic field. From
this effect we predict the appearance of adiabatic hysteresis in the magnetoconductance. Our results can
be interpreted as precursor effect of formation of local moments in disordered electron systems. We also
comment on the relevance of our analysis in three dimensional systems.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 72.15.Rn Quantum
localization – 73.20.Fz Weak localization effects (e.g., quantized states) – 73.40.Qv Metal-insulator
semiconductor structures (including semiconductor-to-insulator)

The recent discovery of a B = 0 metal-insulator transition
(MIT) in high mobility silicon MOSFETs [1] has revived
the interest in disordered electron systems. Whereas con-
ventional scaling theory predicts no metallic state in two
dimensions [2] the experiments show a metallic tempera-
ture dependent resistivity with a characteristic exponen-
tial behavior.

Although there have been attempts to interpret these
experimental findings within a phenomenological single
parameter scaling theory [3], there is growing experimen-
tal evidence as witnessed by magnetic field measurements
[4] that electron-electron interaction in the spin channel
is relevant and needs explicit consideration. Based on the
existing theory of disorder and interaction [5], it has been
pointed out recently [6] that the very existence of a metal-
lic state at low temperatures is indeed possible because of
enhanced spin fluctuations, though a more thorough un-
derstanding of the behavior of various physical quantities
is doubtless required. In particular it has been suggested
that magnetoconductance in parallel field and tunneling
measurements should provide good diagnostic tests for
this theory.

A further distinctive prediction of the theory of disor-
der and interaction concerns the anomalous low temper-
ature behavior of the thermodynamical quantities [7,8].
This appears to be consistent, at least qualitatively, with a
number of experimental results, among which NMR, spin
susceptibility, and specific heat measurements in 3d Si:P
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metallic samples [9]. At phenomenological level, a two fluid
picture consisting of a free electron gas coupled to a set
of localized magnetic moments seems to capture the main
features of the experimental results.

From the theoretical point of view the possibility of for-
mation of local moments by increasing disorder has been
suggested since the early developments of the theory of the
combined effects of disorder and interaction [7]. In 3d the
renormalization group (RG) flows to a Fermi liquid if dis-
order is sufficiently weak. However, by suitably tuning the
couplings of the RG one finds that indeed the combined
effect of disorder and interaction leads to a magnetic in-
stability signaling the formation of magnetized regions [7].
An alternative point of view associates the local moments
in 3d Si:P to the presence of rare fluctuations [10]. The
relation and interplay between the two proposed mecha-
nisms of local moment formation is still an open issue.

Within the scaling theory the magnetic instability
occurs, in 2d, for arbitrarily weak disorder and one argues
that local moments form on a finite length scale at which
the magnetic susceptibility diverges and the RG stops [7].
2d systems then, apart from being presently of great in-
terest, are good candidates for testing the RG approach
to the interaction and disorder effects in the thermo-
dynamics.

In this paper we revisit the thermodynamic behavior of
a two-dimensional disordered interacting electron system.
In particular we show that by taking into account the cor-
rection to the thermodynamic potential due to the com-
bined effect of disorder and interaction in the particle-hole
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spin channel (triplet channel), there arises a non mono-
tonic behavior of the specific heat both in temperature and
magnetic field, strongly resembling the Schottky anomaly
of free local moments. We interpret this as a dynamical
precursor effect of formation of local moments. The above
non monotonic behavior may well be difficult to observe
by a direct measurement of the specific heat of the 2d sys-
tem. We then propose to perform magnetoconductance
measurements in a time varying magnetic field and look
for hysteresis (more details below) [11]. We shall suggest to
carry out this experiment well inside the metallic phase,
for which we shall give predictions for the main energy
scales.

The starting point is the expression of the thermody-
namic potential F in the presence of a magnetic field.
We consider the corrections coming from the singlet
and triplet particle-hole channels in the weakly localized
regime, i.e. in lowest order in the dimensionless resistance.
We neglect corrections from the particle-particle (Cooper)
channel and orbital effects [12]. The magnetic field is cou-
pled via the Zeeman splitting of the spin states. These
corrections were calculated in reference [13] for weak in-
teractions and extended to strong scattering amplitudes in
reference [14]. Here, for completeness, we further extend
these calculations to include the energy renormalization Z
which plays the role of m∗/m in the context of the Fermi
liquid theory of disordered systems [8,15]. The singlet and
triplet particle-hole contribution to F is δF =

∑
J,M F JM

where J and M are the total and the z component of the
spin of the particle-hole pair (z being the direction of the
applied magnetic field). J takes the values J = 0, 1 for the
singlet and triplet contributions, respectively.

In 2d the quantities F JM are
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Here g = 1/(4π2N0D) = e2/(πh)R� is the dimension-
less resistance in two dimensions, D is the diffusion coef-
ficient, NQP = ZN0 is the quasiparticle density of states
per spin (N0 being the bare density of states), τ is the
elastic scattering time and b(ω) = [exp (ω) − 1]−1 is the
Bose function. Equations (1, 2) are valid in the case of
long range Coulomb forces with γ2 being the interaction
coupling constant in the triplet particle-hole channel [16].

Finally, Ωs = gLµBH and Ω̃s = (1 + γ2)Ωs are the bare

and interaction dressed Zeeman spin splitting frequencies,
which enter the diffusive particle-hole propagators [14,17].

One can rewrite δF by separating the temperature and
the magnetic field dependent parts as follows

δF = F0(T ) + F1(Ωs) + gNQPT
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with a =
∫∞

0 dy yb(y) log y ≈ −0.24 and

f(x)=
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(7)

At small x, f2(x) ≈ −(1/2)γ2(1 + γ2)x2 log x.
At zero magnetic field, equation (4) gives the lead-

ing logarithmic correction to the specific heat cV =
−T∂2F/∂T 2, which then is logarithmically enhanced at
low temperatures for γ2 > 1/3. This correction signals
the breakdown of perturbation theory for the quasipar-
ticle density of states and is related to the scaling equa-
tion for the energy renormalization Z [8,18]. The analysis
of the RG equations in two dimensions shows that upon
scaling both Z and γ2 grow so rapidly that the renor-
malization procedure must stop at a finite length scale,
Lc = l exp[c/g0(γ2,0 + 1)], where they both diverge. l is
the mean free path, c a number of order one, and g0,
γ2,0 are the bare values of the running couplings g and
γ2. Because Z and γ2 are related to the specific heat and
to the spin susceptibility via the relations cV /c

0
V = Z and

χ/χ0 = Z(1+γ2), this divergence signals a magnetic insta-
bility and the above length scale Lc has been interpreted
as the typical size over which local moments form in the
disordered system [7]. The very existence of local moments
is expected to have specific consequences in the behavior
of thermodynamic quantities, in particular in the presence
of a magnetic field. In the case of free local moments, the
specific heat shows the so-called Schottky anomaly, which
manifests as a non monotonic behavior both in tempera-
ture and in magnetic field. On the experimental side, the
behavior in the specific heat and magnetic susceptibility
has provided some support to the idea of formation of
local moments in Si:P materials [9].

In the theory of disordered systems, a finite magnetic
field enters as a mass term in the diffusive particle-hole
triplet propagators with M = ±1, thus effectively cutting
off the logarithmic singularities. As a consequence, the
weak localization correction to the specific heat, δcV , is
a decreasing function of the magnetic field H, at least
when H � T . However, explicit evaluation of the leading
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Fig. 1. Magnetic field dependent specific heat,
∆cV (T,Ωs)/[cV gγ2] vs. Ωs/T . The full, dashed and long-
dashed lines represent γ2 = 1, 5, 10.

(H/T )2 term at small H/T shows that δcV increases with
the field, resembling the Schottky anomaly for free spins.
It is useful to define the specific heat relative to the case
with zero magnetic field

∆cV (T,Ωs) = cV (T,Ωs)− cV (T, 0) = −gNQPT

×
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where f2 and its derivatives can be evaluated numerically
from equations (6, 7). The result for ∆cV normalized to
cV gγ2 with cV = (2/3)π2NQPT is shown in Figure 1. The
quantity ∆cV (T,Ωs) has a non monotonic behavior as
function of the magnetic field, resembling the Schottky
anomaly of free local moments. The values Ωs,max and
Ωs,0 at which ∆cV is maximum and zero, respectively,
depend on γ2 and move to smaller values upon increasing
γ2. A non monotonic behavior is also present in the tem-
perature dependence. This is shown in Figure 2 where we
report (∆cV (T,Ωs)/(cV gγ2))(T/Ωs) versus T/Ωs.

Introduction of a magnetic field results in ∆cV > 0
(∆cV < 0 ) for T > Ωs,0 ( T < Ωs,0). This should be con-
trasted with the case of free local moments where∆cV > 0
always. A magnetic field dependent specific heat is a di-
rect consequence of the magnetic field dependence of the
entropy. For free local moments this dependence leads to a
non monotonic (∂S/∂H)T decreasing linearly at small H.
We find that the excess entropy ∆S = S(T,H)− S(T, 0)
which follows from equation (2) has a field dependence
which mimics that of local moments. In Figure 3 we re-
port ∂S(T,H)/∂H vs. H/T normalized to cV gγ2/T . We
also report ∂Sloc(T,H)/∂H for local moments. We rescale
the density of local moments to fix the slope at small H to
the slope of ∂S(T,H)/∂H for γ2 = 3. Like in the free local
moment system, ∂S(T,H)/∂H shows a minimum, whose
location Ωs,min depends on the strength of the interac-
tion. Notice that for γ2 ≈ 3 one obtains Ωs,min/T ≈ 1.5,
close to the value for free local moments.

If local moments are thermally well coupled to the
conduction electrons and weakly coupled to a heat bath,
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Fig. 2. Temperature dependence of the specific heat in pres-
ence of a magnetic field ∆cV (T,Ωs)/[cV gγ2](T/Ωs) vs. T/Ωs.
The full, dashed, long-dashed lines represent γ2 = 1, 5, 10.
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Fig. 3. Magnetic entropy (∂S(T,Ωs)/∂Ωs)T/[cV gγ2] vs.
Ωs/T . The full, dashed and long-dashed lines are numerical
results for γ2 = 1, 3, 10. The dashed-dotted line is the mag-
netic entropy for free local moments, where the density of local
moments has been rescaled in order to fix the slope at small
magnetic field.

−(∂S/∂H)T will control the rate of adiabatic “heat-
ing” and “cooling” of the conduction electrons in a time
varying magnetic field. The temperature hysteresis can
then be made visible, e.g., by measuring the magne-
toresistance ρ(H(t), T (t)). The change of temperature of
the electrons is T − T0 = −(1/k)T (∂S/∂H)T(dH/dt) −
(cV (T,H)/k)(dT/dt), where T0 is the temperature of the
heat bath and k is a parameter describing the thermal cou-
pling of the electrons with the bath. By using ∆cV (T,H)
and ∆S(T,H), one may estimate the order of magnitude
of the hysteretic effect. Considering parameters which are
in the domain of validity of the theory and correspond to
the metallic phase, we take g = 0.05, γ2 = 3, 10 and Z ' 1.
With a sweep rate of 0.1 Tesla/minute and a thermal cool-
ing of the order k/cV ≈ 1/100 s we obtain a temperature
variation of few (5–15%) percent indicating that the ef-
fect we are describing should be visible under the above
parameter conditions.

Concerning the size of the effects discussed in this pa-
per and the possibility to observe them in a broader pa-
rameter range one should keep in mind the following.

i) Equations (1, 2) have been derived by pertur-
bation theory to lowest order in g (metallic limit).
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Indeed we can extend the region of validity of these ex-
pressions (and of ∆cV and ∆S) by assuming that g, γ2

and Z are the running couplings of the RG analysis.
In this case these couplings become temperature and field
dependent and can assume large values, in particular
Z � 1 even though gγ2 ≤ 1, which is the “optimistic”
limit of confidence of the RG analysis [5,6]. This means
that the predicted size of the hysteretic effect can be larger
than the above conservative estimates.

ii) For Ωs < T the running couplings should renor-
malize according to the RG equations derived at H = 0
and are therefore only functions of the temperature. This
implies that a measurement of ∆cV and of ∆S at small H
is a measurement of γ2(T ) and Z(T ). In particular we get
∆cV = −∆S = (1/2)gN0TZγ2(1 + γ2)(Ωs/T )2 at leading
order in (H/T )2. It would be useful to measure these quan-
tities in the metallic side of 2d systems showing a MIT to
assess the validity of the interacting scaling theory of the
2d metallic behavior [6].

iii) The occurrence of a local moment instability at
finite length makes relevant the sample dishomogeneity.
Small local variations of disorder could result into regions
with local moments coexisting with “more” metallic re-
gions. Here, with regions of local moments we mean re-
gions where the interplay of disorder and interaction in
the spin channel has reached the strong coupling limit
gγ2 ≥ 1, Z � 1, χ/χ0 � 1. On a physical ground, one
indeed expects that the weak coupling RG description of
local moments in the metallic phase will evolve at low tem-
perature into a more localized picture similar to that of
the insulating phase [19], possibly in terms of an effective
Kondo Hamiltonian [10]. However a comprehensive theory
of this crossover from weak to strong coupling is still lack-
ing and is a main open problem. A systematic analysis of
the validity and of the breakdown of the existing scaling
theory of disorder and interaction can shed light on this
issue.

We like finally to comment on 3d systems. The 2d
results in equations (1, 2) are easily extended to d > 2.
∆cV and ∆S show non monotonic behavior as func-
tion of T and Ωs analogous to that in 2d. The leading
(H/T )2 contribution to ∆cV and ∆S now reads ∆cV =

0.23gZ3/2(1 +γ2)3/2(
√

1 + γ2−1)N0T
√
T/(~D)(Ωs/T )2.

and ∆S = −2∆cV . By assuming that this expression for
∆cV also holds approaching the strong coupling regime,
where both χ/χ0 and cV /c

0
V diverge, one obtains (∆cV /

(Ωs/T )2) ∼ (χ/χ0)2(c0V /cV )1/2T 3/2. Also this result can
be tested experimentally to fix the limits of validity of the
weak coupling description of local moments in 3d systems.
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